Highly Oriented Atomically Thin Ambipolar MoSe2 Grown by Molecular Beam Epitaxy

نویسندگان

  • Ming-Wei Chen
  • Dmitry Ovchinnikov
  • Sorin Lazar
  • Michele Pizzochero
  • Michael Brian Whitwick
  • Alessandro Surrente
  • Michał Baranowski
  • Oriol Lopez Sanchez
  • Philippe Gillet
  • Paulina Plochocka
  • Oleg V Yazyev
  • Andras Kis
چکیده

Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy.

Atomically-thin, inherently 2D semiconductors offer thickness scaling of nanoelectronic devices and excellent response to light for low-power versatile applications. Using small exfoliated flakes, advanced devices and integrated circuits have already been realized, showing great potential to impact nanoelectronics. Here, high-quality single-crystal MoSe2 is grown by molecular beam epitaxy on Al...

متن کامل

Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

Articles you may be interested in Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy Appl. Optical properties of Si-and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy J. In situ investigation of growth modes during plasma-assisted molecular beam epitaxy of (0001) GaN Appl. Magnetic properties of Mn x Ti 1 − x ...

متن کامل

Growth and optical property characterization of textured barium titanate thin films for photonic applications

We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam...

متن کامل

Etching-free patterning method for electrical characterization of atomically thin MoSe2 films grown by chemical vapor deposition.

Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films usi...

متن کامل

Molecular beam epitaxial growth of MoSe2 on graphite, CaF2 and graphene

We report the structural and optical properties of molecular beam epitaxy (MBE) grown 2-dimensional (2D) material molybdenum diselenide (MoSe2) on graphite, CaF2 and epitaxial graphene. Extensive characterizations reveal that 2HMoSe2 grows by van-der-Waals epitaxy on all 3 substrates with a preferred crystallographic orientation and a Mo:Se ratio of 1:2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017